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Exact solutions of the Dirac equation in the Robertson–Walker space-time are obtained
by an elementary separation method that represents a straightforward improvement of
previous results. The radial equations are integrated by reporting them to hypergeometric
equations. The separated time equations are solved exactly for three models of universe
expansion and integrated by series in a case of the standard cosmological model. The
integration of both radial and time equations represents an improvement of previous
results.
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1. INTRODUCTION

The Dirac equation and its quantization in curved space-time is of great
interest owing to the behavior of spin 1/2 particles in astrophysics and cosmol-
ogy. The relevance of this appears in the general discussion on the interaction
of neutrinos (m = 0) and spherically symmetric gravitational fields performed by
Brill and Wheeler (1957). The explicit solution of the Dirac equation in curved
space-time is crucial in expanding universes and in particular in the Robertson–
Walker space-time that is the base of the standard cosmological model. From
the mathematical point of view the Dirac equation can be formulated in at least
two equivalent but different ways: the four dimensional spin connection formu-
lation (Weinberg, 1972) and the two two spinor one (e.g., Penrose and Rindler,
1984). To the first class there belongs the paper by Parker (1972) whose inter-
est is the production of spin 1/2 particles as a result of an expanding universe.
In the paper by Barut and Duru (1987) (where earlier references on the sub-
ject are reported) the spin connection point of view is assumed and the Dirac
equation is exactly solved for spatially flat Robertson–Walker space-time in three
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meaningfull models of expanding universes. On the other side the spinor formula-
tion was the basic context in which Chandrasekhar (1983) succeeded to separate
the Dirac equation in the Kerr metric that also includes the Schwarzschild metric
as a special case. Chandrasekhar’s method was extended to the Robertson–Walker
space-time by the author of this paper who did not know the work by Barut
and Duru (1987) as well as many of the references therein. The radial Dirac
equation was exactly solved in the open, closed and flat space-time case (Zecca,
1996), the separated time equation integrated in the cases of the standard cos-
mological model (Zecca, 1998) and the normal modes determined (Montaldi and
Zecca, 1998). The Dirac equation has been separated also in Tolman-Bondi models
(Zecca, 2000).

In the present paper another solution of the Dirac equation is proposed. The
starting point is the spin connection formulation of the Dirac equation that leads,
as already checked in the general as well as in the Robertson–Walker metric (e.g.,
Zecca, 2002, 2003) to exactly the same differential equations obtained from the
spinor formulation. The equations are then separated by an elementary separation
method that represents an improvement of the method used in Zecca, 1996. The
radial equations are integrated exactly in every case and the results are in line with
those of Barut and Duru (1987) and Huang (2005). The separated time evolution,
that has been integrated by series in Zecca, 1998 for the standard cosmological
evolution, is here characterized by two a priori different time equations. These
equations are made to essentially coincide by a simple condition on the separation
constants. They are exactly integrated in the linear, exponential and radiation dom-
inated universe expansion, three models of universe evolution already considered
by Barut and Duru (1987). Finally, also a case of matter dominated universe is
discussed, the corresponding time equation reduced to a simple form and easily
integrated by series.

2. THE DIRAC EQUATION AND ITS SEPARATION

The study of the Dirac equation in Robertson–Walker space-time of metric

ds2 = gµνdxµdxν = dt2 − R(t)2

[
dr2

1 − ar2
+r2(dθ2+sin θ2dϕ2)

]
, a = 0,±1.

(1)

is done by starting from the spin connection form of the equation that reads

γ µ(∂µ − �µ)ψ = im0ψ (2)

where ψ is a four dimemsional spinor, γ µ,�µ the “curvature dependent”
gamma matrices and the spin connection vector, respectively. By choosing the
tetrad e

µ

b (b labels the vectors of the tetrad, µ the components of the vectors)
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to be

e
µ

b = 1√
2




1
√

1 − ar2/R 0 0

1 −√
1 − ar2/R 0 0

0 0 1/rR i/(rR sin θ )

0 0 1/rR −i/(rR sin θ )


 (3)

the scheme can be studied as in Zecca (2003) by representing the spinor ψ by two
components spinors

ψ =
(

η

χ

)
, η =

(
F1

F2

)
, χ =

( −G2

G1

)
. (4)

Moreover, the spin connection vector can be calculated, the gamma matrices
represented in the two components spinor formalism based on the tetrad (3)
so that the Dirac Eq. (2) can finally, be explicited so to obtain (Zecca, 2002,
2003)

(α − δ�)G2 + (
 + ε + µ)G1 = im0F1

(D + ε − ρ)G2 − (δ − α)G1 = im0F2
(5)

(δ − α)F1 + (
 + ε + µ)F2 = im0G2

(D + ε − ρ)F1 + (δ� − α)F2 = im0G1

The surviving spin coefficients and directional derivatives appearing in Eq. (5) are
given by

ρ = −(rṘ +
√

1 − ar2)/(rR
√

2); µ = (rṘ −
√

1 − ar2)(rR
√

2)

(6)α = −cot θ/(2rR
√

2); ε = Ṙ/(2R
√

2)

D = e
µ

1 ∂µ, 
 = e
µ

2 ∂µ δ = e
µ

3 ∂µ, δ� = e
µ

4 ∂µ.

Apart from a factor
√

2 in the mass of the particle (that depends on the definitions
of the gamma matrices), the equation (10) coincides with the explicitation of the
Dirac equation in spinor form (Zecca, 2003). The Eq. (6) can be separated in a
standard way by setting

(F1, F2) = exp(im0ϕ)

rR
(H1(r, t)S1(θ ), H2(r, t)S2(θ ))

(7)
(G1, G2) = exp(im0ϕ)

rR
(H2(r, t)S1(θ ), H1(r, t)S2(θ ))

The separated angular equation imply for the separation constant λ

the value λ2 = (l + 1/2)2, l = |m|, |m| + 1, |m| + 2, . . . , and S1lm(θ ), S2lm(θ )
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essentially given by the Jacobi polynomials for |m| ≥ 1 while for m = 0, l =
0, 1, 2, . . . , λ2 = (l + 1)2 and the Silm(θ )’s (i = 1, 2) are essentially the Tcheby-
chef polynomials of second kind (Montaldi and Zecca, 1994).

For what concerns the separated equations in the r, t variables, two of them
result to duplicate the other two so that one is left with

DH1 + εH1 =
(

i m0 − λ

rR
√

2
H2

)


H2 + εH2 =
(

i m0 + λ

rR
√

2
H2

)
. (8)

By setting

H1 = f (r, t) + g(r, t) H2 = f (r, t) − g(r, t) (9)

and using the explicit form of the directional derivatives and spin coefficients in
(6), the equations for f, g result to be

ḟ +
√

1 − ar2

R
g′ + f

(
Ṙ

2R
− i m0

√
2

)
− λ

rR
g = 0

ġ +
√

1 − ar2

R
f ′ + g

(
Ṙ

2R
+ i m0

√
2

)
+ λ

rR
f = 0 (10)

(prime and dot means ∂r , ∂t , respectively). By further setting

f = F (r) T (t), g = G(r)S(t) (11)

the r, t dependence can be finally, separated into the equations√
1 − ar2 G′ − λ

r
G = −k1F (12)

√
1 − ar2 F ′ + λ

r
F = −k2G, (a = 0,±1) (13)

Ṫ R + T

(
Ṙ

2
− i m0R

√
2

)
= k1S (14)

Ṡ R + S

(
Ṙ

2
+ i m0R

√
2

)
= k2T (15)

k1, k2 the separation constants of Eqs. (10). Therefore, the equations for F,G and
T , S are then, respectively

(1 − ar2)F ′′ − arF ′ −
(

λ
√

1 − ar2 + λ2

r2
+ k1k2

)
F = 0 (16)
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(1 − ar2)G′′ − arG′ +
(

λ
√

1 − ar2 − λ2

r2
− k1k2

)
G = 0 (17)

T̈ + 2
Ṙ

R
Ṫ +

(
R̈

2R
+ 1

4

Ṙ2

R2
− im0

√
2
Ṙ

R
+ 2m2

0 − k1k2

R2

)
T = 0 (18)

S̈ + 2
Ṙ

R
Ṡ +

(
R̈

2R
+ 1

4

Ṙ2

R2
+ im0

√
2
Ṙ

R
+ 2m2

0 − k1k2

R2

)
S = 0 (19)

Due to the arbitrariness of k1, k2 if one chooses

k1 = k2 = k = k� (20)

not only Eq. (17) follows from Eq. (16) by the substitution λ → −λ but also the
solution S can be obtained from the solution T through S = T �.

3. SOLUTION OF THE RADIAL EQUATION

As mentioned, it suffices to study one only radial equation. For the solution
it is usefull to distinguish according to the curvature of the space-time.

Flat space-time case: a = 0. In the present case the Eq. (17) reads

G′′ + G

(
λ − λ2

r2
− k2

)
= 0 (21)

By passing to the function z(ξ ) defined by G = rλekrz in the independent variable
ξ = −2kr, the Eq. (21) reduces to a confluent hypergeometric equation. One finds
then

G1 = rλ ekrφ(λ; 2λ; −2kr) (22)

(A second solution can be obtained in a standard way (Abramovitz and Stegun,
1970) but it has not a simple form in the case in which λ is an integer number).

Curved space-time case: a = ±1. By using the variable ρ = √
1 − ar2, the

Eq. (16) becomes

F ′′ + ρ

ρ2 − 1
F ′ + (ρ − 1)2k2/a − λρ − λ2

(1 − ρ2)2
F = 0 (a = ±1) (23)

that can be reported to a hypergeometric equation in the variable ξ = (1 − ρ)/2
for the function z defined by F = [(1 − ξ )/ξ ]λ/2z(ξ ). One finds then that two
possible solutions are given by

F1 =
(

1 + √
1 − ar2

1 − √
1 − ar2

) λ
2

F

(
ik√
a

; − ik√
a

;
1

2
− λ;

1 − √
1 − ar2

2

)
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F2 =
( r

2

)λ

(
1 − √

1 − ar2

2

) 1
2

F

(
ik√
a

+ λ + 1

2
;
−ik√

a

+ λ + 1

2
; λ + 3

2
;

1 − √
1 − ar2

2

)
(24)

where a = ±1. (Compare with Zecca (1996) and Huang (2005)).

4. TIME EQUATION: MODELS OF EXPANDING UNIVERSES

A separated Dirac equation was already considered by the author (Zecca,
1998). There the time equation was integrated by series in the cases of the time
evolution of the standard cosmological model. Here the time equation will be first
integrated in the three expansion models considered by Barut and Duru (1987)
and then in a case of the standard cosmology.

Linear universe expansion model. As mentioned by Barut and Duru (1987),
the expansion law R = Ht was already discussed by Schrödinger (1939). It repre-
sents the curvature dominated expansion governed by the Freedman equation for
a fluid whose state equation is given by p = −ρ/3. (e.g., Kolb and Turner, 1990).
The Eq. (18) becomes now

T̈ + 2

t
Ṫ + 1/4 − k2/H 2 − im0

√
2 t + 2m2

0 t2

t2
T = 0. (25)

By setting T = tαeim0
√

2t η(t) and successively ξ = −2imo

√
2 t, the equation for

η results to be

ξη′′ + (2α + 2 − ξ )η′ −
(

α + 1

2

)
η = 0 (26)

with α defined by 2α + 1 =
√

1 − 4(k/H )2. Two independent solutions are then

T1 = tαeim0
√

2 t φ

(
α + 1

2
; 2α + 2; −2im0

√
2 t

)

T2 = t−1−αeim0
√

2 t φ

(
−α − 1

2
; −2α; −2im0

√
2 t

)
(27)

φ(a; b; x) the confluent hypergeometric function.
Exponential expansion. The law R = eHt is a characteristic expansion of an

inflationary universe if H > 0 and even of a “supercooling” fase of an inflationary
universe if H < 0 (Kolb and Turner, 1990). To integrate the time equation it is
usefull to introduce the variable z = (k/H ) e−Ht for which the expansion law



Solution of the Dirac Equation in Expanding Universes 53

becomes R = k/(Hz) and the Eq. (18) reads

T ′′ − 1

t
T ′ + 3/4 − im0

√
2/H + 2(m0/H )2 − z2

z2
T = 0 (28)

(prime means here d/dz). By setting T = zαf, α = 1/2 − im0

√
2/H , into Eq.

(28) and then ξ = −2z, the equation for f is

ξf ′′ + (2α − 1 − ξ )f ′ −
(

α − 1

2

)
f = 0. (29)

Therefore, the expression

T =
( k

H
e−Ht

)α

e(k/H )e−Ht

φ
(
α − 1

2
; 2α − 1; −2(k/H ) e−Ht

)
(30)

is a solution of Eq. (18). A second solution can be obtained from a standard second
solution of the confluent hypergeometric equation.

Radiation dominated standard cosmology. In this model the expansion law
is of the form R = a0

√
t, a0 a constant number (e.g. Kolb and Turner, 1990). The

Eq. (18) reads now

T̈ + 1

t
Ṫ + 2m2

0t
2 − (

im0/
√

2 + k2/a2
0

)
t − 1/16

t2
T = 0. (31)

One can reduce to a confluent hypergeometric equation by setting T =
t−1/4eim0

√
2 t g(t) and then ξ = −2χ t :

ξ g′′ +
(

1

2
− ξ

)
g′ − ik2

2
√

2a2
0m

2
0

g = 0. (32)

A solution is now

T = t−1/4 eim0
√

2 t φ

(
ik2

2
√

2a2
0m

2
0

;
1

2
; −2im0

√
2 t

)
(33)

Also here a second solution follows from standard properties of the confluent
hypergeometric equation (Abramovitz and Stegun, 1970).

A standard cosmological expansion. Suppose now the space-time filled with
comparable contribution of matter and radiation to the energy density but with
negligible curvature. For time much greater then the equilibrium time, the standard
cosmology predicts an expansion law of the form R = a0 t2/3, a0 constant. Cor-
respondingly the Eq. (19) can be integrated by series introducing the independent
variable

τ =
∫ t

0

dt ′

R(t ′)
. (34)
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The expansion law in the variable τ is then R = (a3
0/9)τ 2 = ατ 2. The Eq. (19)

reads (prime mens d/dz)

S ′′ + 2

τ
S ′ + [

2m2
0α

2 τ 4 + 2im0

√
2α τ − k2]S = 0 (35)

and by setting y = τ S,

y ′′ + y[aτ 4 + ibτ − k2] = 0 (36)

a = 2m2
0α

2, b = 2
√

2αm0. By inserting the expression
∑∞

0 cnτ
n into Eq. (36),

the first terms of two independent integrals corresponding to the choices (c0, c1) =
(0, 1) and (c0, c1) = (1, 0), respectively, can be determined:

y1 = τ + k2

6
τ 3 − ib

12
τ 4 + k4

120
τ 5 − ibk2

120
τ 6 + · · ·

y2 = 1 + k2

2
τ 2 − ib

6
τ 3 + k2

24
τ 4 − ibk2

30
τ 5 + k2 + 2b2

720
τ 6 + · · · (37)

The solution provides a simplification of a similar result given in Zecca, 1998.
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